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a b s t r a c t

In this study, an integrated dynamic model was developed through combining a mechanistic model, a
neural network (NN) model and a genetic algorithm approach, in order to simulate the performance of a
full-scale municipal wastewater treatment plant (WWTP) with substantial influent fluctuations. As the
base of the integrated model, the mechanistic model was initially established based on the activated
sludge model 3 and the EAWAG bio-P module, and was used to generate the residuals for the NN model.
The NN model was employed to build the relationship between the input and output variables. The
network weights of the NN model were optimized with a genetic algorithm approach. The resulting inte-
grated model was applied to simulate the 5-month performance of a full-scale WWTP with significant
ntegrated model

echanistic model
eural network (NN)
astewater treatment plant (WWTP)

influent fluctuations, and the simulation results matched the measured ones of the WWTP well even
under influent disturbance conditions. Compared with the individual mechanistic model and NN model,
the integrated model was able to capture sufficient residual information to compensate for the inaccu-
racy of the mechanistic model and improve the extrapolative capability of the NN model. This model
established in our work is demonstrated to be an effective and useful tool to simulate the performance
of WWTPs.
. Introduction

Activated sludge processes are widely used for the treatment of
oth municipal and industrial wastewaters. One of main features of
astewater treatment plants (WWTPs) is the fluctuation of influ-

nt wastewater quality and quantity, e.g., high temporal variability
f inflow and variable concentrations of components [1,2]. Thus,
fficient modeling is essential to improve the monitoring, control
nd operation of WWTPs [3–5].

Activated sludge models (ASM1, 2, 2d, and 3) are able to sim-
late the complex physical, chemical and biological processes in
WTPs [3]. They have been proven to be the most effective tools

o describe the removal processes of carbonaceous, nitrogenous
nd phosphate in WWTPs [6,7]. However, WWTPs are often char-
cterized with a high daily variation in wastewater quality and/or

uantity [5,8]. When a WWTP is subjected to such a variation, the
SM models may exhibit poor predict abilities, and there is a signif-

cant mismatch between the model predictions and the measured
ata [9]. Generally, these models are high-dimensional and contain
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a large number of kinetic and stoichiometric parameters, which
should be determined with plant operation data [4,10]. In addition,
the WWTP effluent is not often well predicted by the mechanistic
models because of the separation problems of the secondary clari-
fiers in WWTPs. To sort out this problem, neural network (NN), an
appropriate approach, should be introduced into the mechanistic
models to improve their simulating capacity.

The NN approach is a powerful and effective tool to deal with
problems to extract information out of complex, non-linear data
without requiring prior knowledge of the relationships of the pro-
cess parameters [9,11,12]. Because of its interpolative capability to
capture the effects of some external disturbances, the NN approach
has been successfully applied in multivariate non-linear biopro-
cesses as a useful tool to construct model [13–18]. However, the NN
is typically used as a “black-box” approach, hiding the physics of the
model process, and lacks for extrapolative capacity [9,19]. In addi-
tion, the gradient algorithm usually used in the back-propagation
NN is a local search algorithm and may tend to fall into a local min-

imum and result in inconsistent and unpredictable performance
[20]. Genetic algorithm (GA), based on the principles of survival of
the fittest strategy, has been proven to be a powerful search and
optimization method to solve problems with objective functions
that are not continuous or differentiable [21,22]. Thus, an intro-

http://www.sciencedirect.com/science/journal/13858947
http://www.elsevier.com/locate/cej
mailto:hqyu@ustc.edu.cn
dx.doi.org/10.1016/j.cej.2010.03.063
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Fig. 1. Schematic diagr

uction of GA might avoid trapping into the local minimum of NN.
he NN-GA coupled models have been developed to optimize the
arious biological processes [18,23].

Therefore, in this study an integrated dynamic model was
onstructed and used to simulate the performance of WWTPs, espe-
ially under influent fluctuating conditions. Our work aimed at: (1)
eveloping a mechanistic model based on ASM3 and EAWAG bio-P
odule to generate the residuals for the input of the NN; (2) using a

ack-propagation NN model to establish the relationship between
he input and output variables to simulate the dynamic behavior of
he WWTP; (3) introducing GA to optimize the NN weight vector;
nd (4) demonstrating the capacity of the integrated model with a
ull-scale WWTP as an example.

. Model development

To simulate a full-scale WWTP, an integrated model consisted
f a mechanistic model, a NN model and a GA approach was
stablished. The mechanistic model was used as the base of the
ntegrated model, and it generated the residuals for the NN model;
N was used to build the relationship between the input and output
ariables; the network weights of NN were optimized with the GA
pproach. The schematic representation of this integrated model is
hown in Fig. 1.

The mechanistic model was established through a combina-
ion of the ASM3 [3] and the EAWAG bio-P module [24]. In the

echanistic model, the active biomass was divided into three
ategories: heterotrophic organisms (XH), autotrophic organisms
XA) and phosphorus accumulating organisms (XPAO). The intra-
ellular storage product by heterotrophic organisms (XSTO), and
he cell-internal storage product (XPHA) and polyphosphate (XPP)
y the phosphorous accumulating organisms were considered in
he model. The inert particular organic material (XI) arising from
iomass endogenous respiration was also included.

Six dissolved chemical components were considered to be

elated to the biochemical processes and the reaction stoichiome-
ry, e.g., dissolve oxygen (SO), readily biodegradable substrate (SS),
mmonium-N (SNH4 ), nitrite and nitrate-N (SNOx ), nitrogen gas (SN2 )
nd inorganic soluble phosphors, primarily orthophosphate (SPO4 ).
or the kinetic processes, hydrolysis process, in which all slowly
the integrated model.

biodegradable substrate contained in the influent became available
to activated sludge, was considered. Eight processes for the het-
erotrophic organisms (XH) and three processes for the autotrophic
organisms (XA) were included in the mechanistic model [3]. For the
phosphorus accumulating organisms (XPAO), eleven processes were
taken into account [24]. The model was constructed in a matrix
format. The kinetic processes of biological conversions adapted
from ASM3 [3] and EAWAG bio-P [24] notation are outlined in
Tables 1 and 2. The stoichiometrics of these processes are listed
in Tables S1 and S2. The kinetic coefficients and initial parameters
used in the model were adapted from the ASM3 and EAWAG bio-P
module [3].

Influent flow rate Q(t), mixed liquid volatile suspended solid
(MLVSS) (t) and the influent concentrations of chemical oxy-
gen demand [CODin (t)], ammonium [NH4,in

+ (t)] and phosphors
[PO4,in

3− (t)] as input variables were put into the mechanistic
model. As a result, the effluent concentrations of CODeff (t), NH4,eff

+

(t), PO4,eff
3− (t) were predicted. The residuals, e(t) of COD, NH4

+ and
PO4

3−, were defined as the differences between the measured data
and predicted values by the mechanistic model.

The NN model was used to establish the relationship between
the input and output variables. The feed-forward back-propagation
NN, consisting of one input layer, one hidden layer and one output
layer, was employed. Influent flow rate Q(t); MLVSS(t) in the reac-
tor; the influent concentrations of CODin (t), NH4,in

+ (t), PO4,in
3−

(t), suspended solids [SSin (t)], pHin (t); the effluent concentrations
of CODeff (t), NH4,eff

+ (t), PO4,eff
3− (t), SSeff (t) were selected as the

input variables of the NN model. Since dynamic information could
be extracted from the residuals, the residuals e(t) of COD, NH4

+ and
PO4

3− generated from the mechanistic model were also put into
the NN model as the input variables. The network outputs were
the residuals e(t + 1) of COD, NH4

+ and PO4
3−. The number of the

hidden neurons was determined from the learning curves, which
were generated from the recall and generalization process through
varying the number of neurons in the hidden layer [25]. The activa-

tion function of the neurons of both hidden and output layers were
chosen as the sigmoid function, f(x) = 1/(1 + e−x). Thus, this type of
function allowed the network to learn non-linear relationships [26].

An “error back-propagation” algorithm was used as the NN
learning algorithm, in which the input values of a sample were ini-
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Table 1
Process kinetic rate equations for the mechanistic model.

Process Process rate equation

1. Hydrolysis kH
XS/XH

KX+XS/XH
XH

Heterotrophic organisms (XH)

2. Aerobic storage kSTO
SS

KH,S+SS

SO
KH,O+SO

XH

3. Anoxic storage kSTO�H,NOx
SS

KH,S+SS

KH,O
KH,O+SO

SNOx
KNOx +SNOX

XH

4. Aerobic growth �H
XSTO/XH

KSTO+XSTO/XH

KH,S
KH,S+SS

SO
KH,O+SO

SNH4
KNH4

+SNH4

SPO4
KH,PO4

+SPO4
XH

5. Anoxic growth �H�H,NOx
XSTO/XH

KSTO+XSTO/XH

KH,S
KH,S+SS

KH,O
KH,O+SO

SNH4
KNH4

+SNH4

SNOx
KNOx +SNOx

SPO4
KH,PO4

+SPO4
XH

6. Aerobic endogenous respiration bH,O
SO

KH,O+SO
XH

7. Anoxic endogenous respiration bH,NOx

KH,O
KH,O+SO

SNOx
KNOx +SNOx

XH

8. Aerobic respiration of XSTO bSTO,O
SO

KH,O+SO
XSTO

9. Anoxic respiration of XSTO bSTO,NOx

KH,O
KH,O+SO

SNOx
KNOx +SNOx

XSTO

Autotrophic organisms (XA)

10. Aerobic growth �A
SO

KA,O+SO

SNH4
KA,NH +SNH4

SPO4
KA,PO +SPO

XA

Ox

x +SNOx
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11. Aerobic endogenous bA,O
SO

KA,O+SO
XA

12. Anoxic endogenous respiration bA,NOx

KA,O
KA,O+SO

SN
KA,NO

ially applied to be learned as the inputs of the NN model. Then,
he outputs of the NN model were compared with the given output
alues of the example and the errors were estimated. The errors
ere used to analyze which synaptic weight should be modified to

educe the errors for this sample, and the weights and the thresh-
ld values of the output and the hidden layers were adjusted using
qs. (1)–(4):

t+1
ij

= wt
ij − �

∂Ek

∂xj
yi + ˛(wt

ij − wt−1
ij

) (1)

t+1
j

= �t
j − �

∂Ek

∂xj
+ ˛(�t

j − �t−1
j

) (2)

t+1
hi

= wt
hi − �

∂Ek

∂xi
xk,h + ˛(wt

hi − wt−1
hi

) (3)
t+1
i

= �t
i − �

∂Ek

∂xi
+ ˛(�t

i − �t−1
i

) (4)

here xi, xj, yi and yj are defined as the input and output values
f the hidden layer and the output layer, respectively. whi is the

able 2
rocess kinetic rate equations for the mechanistic model (continuation).

Process Process rate equation

Phosphorus accumulating organisms
13. Storage of XPHA qPHA

SS
KPAO,S+SS

XPP/XPAO
KPAO,PP+XPP/

14. Aerobic storage of XPP qPP
SO

KPAO,O+SO

SPO4
KPP,PO4

+SPO4

15. Anoxic storage of XPP qPP�PAO,NOx

KPAO,O
KPAO,O+SO KNO

16. Aerobic growth �PAO
SO

KPAO,O+SO

XPHA/XPA
KPHA+XPHA/

17. Anoxic growth �PAO�PAO,NOx
KPAO,O

KPAO,O+SO K

18. Aerobic endogenous respiration bPAO
SO

KPAO,O+SO
XPAO

19. Anoxic endogenous respiration bPAO�PAO,NOx

KPAO,O
KPAO,O+SO KN

20. Aerobic respiration of XPP bPP
SO

KPAO,O+SO
XPP

21. Anoxic respiration of XPP bPP�PAO,NOx

KPAO,O
KPAO,O+SO KNO

22. Aerobic respiration of XPHA bPHA
SO

KPAO,O+SO
XPHA

23. Anoxic respiration of XPHA bPHA�PAO,NOx

KPAO,O
KPAO,O+SO KN
4 4

XA

connection weight from the hth neuron of the input layer to the
ith neuron of the hidden layer, and wij is the connection weight
from the ith neuron of the hidden layer to the jth neuron of the
output layer. �i and �j are the threshold values of the hidden layer
and output layer, respectively. � is the learning factor, and ˛ is the
momentum factor.

This procedure was repeated for each training example in the
training set. The global error was calculated using the equation
below:

E =
k∑

k=1

j∑

j=1

(yj − dk,j)
2

2
(5)

The computation process of the NN model would be terminated

by two rules: (1) meeting the setting goal; and (2) reaching the
maximum learning time.

The algorithm used in back-propagation is a gradient-
descending algorithm. However, the gradient algorithm might tend
to fall into a local minimum and result in inconsistent and unpre-

XPAO
XPAO

XPP/XPAO
KPHA+XPP/XPAO

Kmax,PAO−XPP/XPAO
KiPP,PAO+Kmax,PAO−XPP/XPAO

XPAO

SNOx

x +SNOx

SPO4
KPP,PO4

+SPO4

XPP/XPAO
KPHA+XPP/XPAO

Kmax,PAO−XPP/XPAO
KiPP,PAO+Kmax,PAO−XPP/XPAO

XPAO

O
XPAO

SNH4
KPAO,NH4

+SNH4

SPO4
KPAO,PO4

+SPO4
XPAO

XPHA/XPAO

PHA+XPHA/XPAO

SNOx
KPAO,NOx +SNOx

SNH4
KPAO,NH4

+SNH4

SPO4
KPAO,PO4

+SPO4
XPAO

SNOx

Ox +SNOx
XPAO

SNOx

x +SNOx
XPP

SNOx

Ox +SNOx
XPHA
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Table 3
Measured variables of the full-scale WWTP.

Variable Symbol Unit Mean Min–max

Influent COD CODin mg/L 198 102–391
Influent NH4

+ NH4,in
+ mg/L 27.3 15.9–40.9

Influent PO4
3− PO4,in

3− mg/L 1.60 0.83–2.48
Influent SS SSin mg/L 97 44–190
Influent pH pHin 7.41 6.89–7.74
Effluent COD CODeff mg/L 40.8 21.6–58
Effluent NH4

+ NH4,eff
+ mg/L 3.0 0.1–10.1

Effluent PO 3− PO 3− mg/L 1.31 0.44–2.17

d
g
a
t
w
a

(

(

(

t
W

F
t

4 4,eff

Effluent SS SSeff mg/L 11 5–19
MLVSS MLVSS mg/L 5774 3909–7983

ictable performance of the NN model [23]. Thus, to assure the
ood performance of the integrated model, GA, a global search
lgorithm, instead of local search algorithm, was introduced into
he integrated model to search for the weight vector of the net-
ork (Fig. 1). The searching mechanisms of the integrated model

re briefly described as follows:

1) For the integrated model, the initial weights of NN were con-
structed based on training data sets.

2) GA was employed to explore solutions among solution space.
Once the GA generated a new solution, the NN model would be
used to determine its fitness value for the GA to continue its
searching process.

3) After the stopping criterion, e.g., generation number, fitness
threshold or population convergence, was met, the best solu-
tion would be generated by the GA.
After the best weight vectors of the network became available,
hey were introduced into the integrated model to simulate the

WTP performance.

ig. 2. Simulation results of the effluent COD, NH4
+ and PO4

3− concentrations using
he integrated model.
Fig. 3. Measured versus predicted values of (A) COD (R2 = 0.850); (B) NH4
+

(R2 = 0.930); and (C) PO4
3− (R2 = 0.926) concentrations in the effluent with the inte-

grated model for training data.

3. Materials and methods

3.1. Description of the Zhuzhuanjing WWTP

The WWTP is located in Hefei City, China, in which wastewater
originating from the surrounding city areas is treated. The plant
consists of gridirons, primary clarifiers, eight sequencing batch
reactors (SBRs). Each SBR has a rectangle configuration and is oper-
ated in a fill-and-withdrawal mode. Wastewater is introduced and
simultaneously mixed in the fill period; the reactor is aerated in
the reaction period; later, the mixed liquor is allowed to settle in

the settling period; at the end of each cycle the supernatant is
discharged from the reactor. The working volume of each SBR is
2000 m3. The time allotted for the operating cycle of each SBR is:
30 min for fill, 120 min for reaction, 60 min for settling, and 30 min
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ig. 4. Measured versus predicted values of: (A) COD (R2 = 0.920); (B) NH4
+

R2 = 0.792); and (C) PO4
3− (R2 = 0.794) concentrations in the effluent with the inte-

rated model for testing data.

or decanting. The reactor effluent over a 5-month period was col-
ected and measured almost every day (Fig. S1). Table 3 lists the
vailable calculations from the plant along with their means, max-
mum and minimum values. An index, daily variation coefficient
Kday), was introduced to quantitatively evaluate the daily fluctua-
ions of the wastewater quality, which is defined as follows [27]:

day = maximum value of the wastewater quality
average value of the wastewater quality

(6)

.2. Wastewater characterization
Before the simulation with the mechanistic model, the organic
atters in the municipal wastewater were fractionized to read-

ly biodegradable organic compounds (SS), inert soluble organic
ompounds (SI), slowly biodegradable organic compounds (XS) and
Fig. 5. Measured versus predicted values of: (A) COD (R2 = 0.128), (B) NH4
+

(R2 = 0.128), and (C) PO4
3− (R2 = 0.001) concentrations in the effluent with the mech-

anistic model.

inert particular organic compounds (XI). The biodegradable COD
in the influent was the sum of the SS and XS and was calculated
from the formula proposed by Grady et al. [27]. The inert fraction
SI was determined independently and subtracted from the soluble
COD to give the fraction SS. SI was evaluated from the effluent inert
COD. The concentrations of XS and XI were estimated based on the
biological oxygen demand (BOD5) measurements [28].

The experimental data were directly put into the mechanistic
model to generate the residuals. However, prior to the NN training,
the data sets were normalized to the range of 0–1, in order to have
the same order for the variables. After normalization, each variable
had a zero of mean and a unitary variance according to its corre-
sponding maximum and minimum values. In this way, the effect

of different units was avoided and the variability was reduced. The
data preprocessing above was carried out to ensure that the statis-
tical distribution of the values for each net input and output was
roughly uniform [25].



F. Fang et al. / Chemical Engineering Journal 160 (2010) 522–529 527

F
(
m

3

S
t
s
t
w

4

4

a

ig. 6. Measured versus predicted values of: (A) COD (R2 = 0.517), (B) NH4
+

R2 = 0.703), and (C) PO4
3− (R2 = 0.768) concentrations in the effluent with the NN

odel for training data.

.3. Analysis and simulation

Measurements of COD, NH4
+-N, NO2

−-N, NO3−-N, PO4
3−-P, pH,

S, MLSS and MLVSS followed the Standard Methods [29]. Simula-
ion of the mechanistic model was performed with the AQUASIM
oftware package [30]. For the NN model and integrated model,
he computation was performed using software Matlab 7.0 (Math-
orks, Natick, USA).

. Results and discussion
.1. Wastewater characterization

As shown in Fig. S1, the daily variations of influent COD, NH4
+

nd PO4
3− concentrations are significant. The highest values of
Fig. 7. Measured versus predicted values of: (A) COD (R2 = 0.010), (B) NH4
+

(R2 = 0.039), and (C) PO4
3− (R2 = 0.182) concentrations in the effluent with the NN

model for testing data.

influent COD, NH4
+ and PO4

3− concentrations were detected to
be 391, 41 and 2.5 mg/L, respectively, whereas their lowest values
were only 102, 16 and 0.8 mg/L, respectively. Thus, the daily vari-
ation coefficients of COD, NH4

+ and PO4
3− are calculated as 1.97,

1.50 and 1.55, respectively. The high Kday values indicated that the
fluctuation of wastewater quality of this WWTP was significant.

The fractions of SS, SI, XS and XI in the total influent COD in this
WWTP were calculated. The SS fraction in the influent was deter-
mined to be 30.1 ± 3.9% of the total COD, and the initial SI fraction
was estimated to be 10.3 ± 2.3% of the total COD. The initial estab-
lished XI fraction was approximately 11.0% of the total COD and the
contribution of XS was calculated to be 43.6% of the total COD.

4.2. Simulation results by the integrated model

Before generating the residuals by the mechanistic model, the
parameter sensitivity analysis was performed through changing

one by one in the simulation. The sensitivity analysis revealed that
the maximum specific growth rates of XH, XA and XPAO and the
yield coefficients of XH and XA had great influences on the efflu-
ent COD, NH4

+ and PO4
3− concentrations. Therefore, the sensitive

parameters were calibrated in AQUASIM [30]. Using the calibrated
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Table 4
Root mean square errors for the training and testing data sets of the three models.

Model Training Testing
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Mechanistic model 2.65 4.15
NN model 0.54 2.68
Integrated model 0.35 0.38

odel, the residuals between the predicted and measured values
ere generated.

143 experimental samples were used for the integrated model
imulation. The experimental samples were divided into different
roups for training and testing sets. 60%, 70%, 80% and 90% of the
amples were used for training the NN model, respectively. Cor-
espondingly, 86, 100, 114 and 129 points were used for training,
espectively. The remaining samples were used for testing. The root
ean square error (RMSE) of the training and the testing sets of the

bove four groups had little difference (data not shown). Thus, in
he subsequent study the former 100 samples were used for train-
ng or calibrating the NN model, whereas the remaining 43 samples

ere employed for model testing or verification.
The number of neurons of the hidden layer was an important

arameter for the NN model. A low number of neurons does not
rovide sufficient parameters to train the neuronal network cor-
ectly. On the other hand, an excessive number of neurons leads to
vertraining problems and its computational costs become higher
25]. Thus, the optimal number of the hidden neurons should be
arefully selected. In this study, from the absolute errors (scaled)
f both recall of the training data sets and the generalization of the
esting data sets, the best network structure of 13 neurons in the
idden layer was determined (Fig. S2).

The simulation results with the integrated model illustrated in
ig. 2 show that the predicted effluent COD, NH4

+ and PO4
3− levels

atched the measured ones well. The model was capable of accu-
ately simulating the effects of the variation of influent COD loading.
atisfactory predictions of NH4

+ and PO4
3− were also observed with

espect to the fluctuation of influent concentration. To better eval-
ate the simulation results, a line of unit slope has been drawn in
oth Figs. 3 and 4, in which a point situated exactly on the line

ndicates a perfect fit. Fig. 3 shows the comparison between the
xperimental values for the three output variables and the corre-
ponding values obtained by fitting the integrated model of the
raining data sets. Comparison between the measured and pre-
icted values for each output variable of the testing data sets is
hown in Fig. 4. This figure shows that the trained integrated model
howed no systematic over-prediction or under-prediction with
egard to the output variables.

.3. Comparison among the mechanistic model, the NN model
nd the integrated model

A comparison among the mechanistic model, the NN model and
he integrated model was performed. The calibration results of the

echanistic model are illustrated in Fig. 5. Its low coefficient of
etermination (R2) indicates that this model gave the poor predic-
ion results, because some dynamics information was not taken into
ccount in the mechanistic model. For instance, the poor separation
n the secondary clarifiers had influence on the effluent quality, but
his issue was not addressed in the mechanistic model. The simu-
ation results of the NN model illustrated in Figs. 6 and 7 show that
lthough this model could simulate the training data set well, it was

ver-trained and exhibited the poor extrapolative capacity. By con-
rast, the integrated model gave the best prediction results and was
ble to simulate the fluctuation of influent quality and quantity.

The RMSE is another index to evaluate the model performance.
able 4 lists the RMSE values of the training and testing data sets for
Journal 160 (2010) 522–529

the three models. The lowest RMSE value of the integrated model
suggests that the integrated model gave the best prediction perfor-
mance again.

The integrated model was capable of accurately simulating the
full-scale WWTP performance under the variations of the influent
loading and disturbances and describing the influence of separa-
tion process in the secondary clarifiers on the effluent quality. This
indicates that the residuals contained sufficient relevant informa-
tion about the dynamic behavior of the system, which could not
be taken into account in the mechanistic model itself [9]. Such
a simulation performance can be explained by the fact that the
WWTP in this application was an inherently non-linear system with
time-varying biological reactions and large influent variations. The
integrated model was able to extract the non-linear information
from the residuals to compensate for the inaccuracy of the mech-
anistic model and accordingly could improve the extrapolation
ability of the NN model.

5. Conclusions

• In this work, an integrated dynamic model was established
through combining a mechanistic model, an NN model and a GA
approach to simulate the performance of a full-scale WWTP with
substantial influent fluctuations.

• The mechanistic model was initially established based on the
ASM 3 and the EAWAG bio-P module. It was used to generate
the residuals for the NN model. The relationship between the
input and output variables was built with the NN model, and
the network weights of the NN model were optimized with a
GA approach.

• The resulting integrated model was applied to simulate the 5-
month performance of the WWTP. The simulation results shows
that the predicted values by the integrated model matched the
measured ones of the plant well under influent disturbance con-
ditions.

• Compared with the mechanistic model and the NN model, the
integrated model was able to capture sufficient residual informa-
tion to compensate for the inaccuracy of the mechanistic model
and improve the extrapolative capability of the NN model.

• Considering the great variations in the influent and high distur-
bances of WWTPs, the integrated model established in our work is
an effective and useful tool to simulate such a complex biological
system like WWTPs.
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